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Abstract 
Bitcoin is the world’s leading cryptocurrency, allowing users to make transactions securely 
and anonymously over the internet. In this paper, I tried to predict the future price of  
bitcoin in a shorter period. I implemented a lot of  trading indicators and technical 
analysis techniques used in financial stocks followed by machine learning techniques to 
learn from these indicators and predict the future price of  bitcoin. I used convolutional 
Neural Network (CNN) with technical indicators to obtain unto 90% accuracy. 

Introduction 
Bitcoin is a decentralized digital currency that uses cryptographic protocol. It is not 
bound or backed by any government and works on a peer-to-peer system. Bitcoin is the 
worlds most valuable cryptocurrency introduced following the release of  a white-paper 
published in 2008 under the pseudo name Satoshi Nakamoto [1]. Bitcoin is very different 
from traditional financial markets. It operates on a decentralized, peer-to-peer and 
trustless system in which all transactions are posted to an open ledger called the 
Blockchain. This type of  transparency is unheard of  in other financial markets. Recently, 
there has been a lot of  other crypto-currency (alt-coins) introduced to compliment bitcoin 
and what it’s trying to achieve. The crypto-currency has a market cap of  305 billion USD 
with Bitcoin dominating the market with 54% of  the market cap [2]. 

Bitcoin is highly volatile and unlike traditional markets, its price is tougher to predict. 
Bitcoin also faces a lot of  market manipulation issues and the social trading and wisdom 
of  the crowd plays a big role. However, Bitcoin still follows the general financial trend 
analysis just on a very fast rate since it is seeing an exponential growth. In this paper we 
implement a short term future price prediction for Bitcoin. We gather the price data of  
Bitcoin and apply a lot of  financial technical indicators to the price data to get a lot of  
information. We use this information to train a Convolutional Neural Network (CNN) to 
predict the short-term future price of  Bitcoin. Every Bitcoin trader prefers their own 
technical indicators when trading in Bitcoin. We thought it would be interesting to train a 
CNN using these indicators so that the CNN can extract the relevant information from 
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each of  the technical indicators in order to perform an accurate estimate of  the future 
price pattern. 

Dataset 
Bitcoin is being traded in a lot of  online exchanges at the moment with the biggest being 
BitFinex, Bitthumb, GDAX, Poloniex, and Bitstamp. I collected data from Bitstamp since 
it’s one of  the older exchanges and haven’t had any hacking or market manipulation 
complaints. I collected the data from 2012-01-01_to_2017-10-20 for Bitstamp available 
via their API [3]. For my training and analysis, I only used the last 1 year of  that data. 
Since I wanted to make a short term prediction, I used the last one hour of  data and 
performed technical analysis for the last one hour to train the convolutional neural 
network. The CNN would then predict the 20 minutes future price of  bitcoin. 

I collected the following per minute data from this datasets: 

Opening Price. 

Closing Price. 

High. 

Low. 

Volume. 
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Feature Engineering and Technical Analysis 
Technical analysis of  stocks is in some ways very similar to feature engineering. Technical 
analysis and technical indicators are used by traders and stock market experts to predict 
the future price. Every trader prefers their own technical indicator with each indicator 
working differently in different environment. I used these technical indicators as features 
for my convolutional network. Rather than letting my CNN learn the feature on its own, I 
extracted a lot of  features to make it easier for the CNN to learn through these features. 
From the collected data described in previous section, I used the most commonly used 
indicators by traders to engineer the following features: 

Weighted Price 

Rather than using just the closing price, it is also preferable to know the volume weighted 
price. A price change due to a movement of  a lot of  volume usually has a bigger effect on 
the market rather than a price change due to a smaller volume movement. So a Volume-
Weighted price is a good technical indicator. 

Simple Moving Average 

Simple Moving Average (SMA) is an arithmetic moving average calculated by taking a 
mean of  the closing price of  the previous time periods. In my opinion, the most 
commonly used SMA within the Bitcoin traders are for time periods = 7, 21, 77, 231. I 
used these to create four different SMA values. The cross over between these moving 
averages is very important in predicting the market sentiment and the future price. 

Relative Strength Index 

Relative Strength Index (RSI) is the most commonly used momentum oscillator that 
predicts whether the market is in oversold or overbought. The RSI oscillates between zero 
and 100. Traditionally the RSI is considered overbought when above 70 and oversold 
when below 30. Signals can be generated by looking for divergences and failure swings. 
RSI can also be used to identify the general trend. I implemented multiple RSI with 
different time periods to get a better understanding. 

MACD 

Moving Average Convergence Divergence (MACD) is again an oscillator. MACD is a 
trend-following momentum indicator that shows the relationship between two moving 
averages of  prices. The MACD is calculated by subtracting the 26-day  exponential 
moving average  (EMA) from the 12-day EMA. A nine-day EMA of  the MACD, called 
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the "signal line", is then plotted on top of  the MACD, functioning as a trigger for buy and 
sell signals. 

Image Creation and Data Preparation 
Rather than converting this into an exact price prediction, I changed it into a 
classification problem since that is what the traders are interested in. Since the price of  
Bitcoin has also changed from a single digit to now five digits, it is also difficult for the 
neural network to learn this behavior if  the price is not standardized or normalized. We 
created five classes to classify the future value: 

Within 0.4% of  the closing price. 

Between 0.4% to 0.8% above the closing price. 

Between 0.4% to 0.8% lower the closing price. 

More than 0.8% higher than the closing price. 

More than 0.8% lower than the closing price. 

When the Bitcoin price is 10,000 USD, 0.8% constitutes an $80 change. Which is quite a 
reasonable assumption given the volatility of  Bitcoin this much change can happen in a 
time period of  20 minutes. 

I used the per minute data and collected it for one hour. After implementing all the 
indicators, I had multiple time series data of  length 60. I combined all these time series 
data and information to form an Image of  size 24x60. This Image would form the input 
to the convolutional neural network. I also collected in a separate variable a list of  all the 
ground truth or the actual answers. This variable “y” is a one-hot vector of  the true 
classification. 

I took 20% as my test data and the remaining 80% is used as a training data. 
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Convolutional Neural Network 

I implemented a CNN containing two convolutional layers followed by a fully connected 
layer and a softmax for classification. 

I input my Data Image into the first layer of  a 5x5x32 convolutional neural networks. 
The output of  this network is pooled by a 2x2 maxpool layer. The output of  this neural 
network is passed to another 5x5x2 convolutional neural network followed by another 2x2 
maxpool layer. 

I take the outputs from the feature learning stage and flattened them out and inserted it 
into a fully connected layer of  1024 neurons (multi-layer perceptron). I took the output of  
the fully connected layer and passed it through a softmax classifier with 5 classes. 

To prevent the Convolutional Neural Network from overfitting, I implemented a dropout 
mechanism [4] after the fully connected layer and before the softmax layer. Overfitting is 
a serious problem in Neural Network and Dropout is a commonly used technique to 
prevent that.  
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Simulation Results 
I first implemented the CNN in Knet library in Julia. However, due to some errors and a 
lack of  resources in this library I wasn’t able to finish that work. Therefore, I shifted to 
TensorFlow in Python [5]. I re-implemented everything in TensorFlow and it gave 
accurate predictions. 

The results were never able to converge the accuracy to a single value, the more the 
neural network learned the better the results I got. I ran the Neural network for three 
hours to get the following range of  classification accuracy: 

Train dataset accuracy :	 75%-95%  

Test dataset accuracy :	 70%-90% 

I believe that for trading, these accuracies are very good predictions. Given the volatile 
nature of  Bitcoin, it is understandable that the prediction accuracy changes over time. 

Analysis and Conclusion 

I believe that for deep learning, it would require a much longer time to train the CNN. I 
also believe it would be better to train the CNN with more data. I currently obtained the 
data from just one exchange, maybe combining multiple exchange data and increasing 
the volume in our data would help the results. 

The more indicators I used the better result I got. I also believe we can add more 
technical analysis and indicators in our data. The financial markets and traders use tons 
of  very useful indicators and we can maybe employ more of  such indicators. 

I also believe the predictor will not work when the market is being manipulated. In the 
past, the market manipulation of  Bitcoin was much easier but now since the 
cryptocurrency market cap is above 300 billion, it would be much difficult to manipulate 
the market. The price of  bitcoin has also fluctuated a lot during this time and it would be 
preferable to use a standardized or normalized price of  Bitcoin. 

Furthermore, the user sentiment and the wisdom of  the crowd plays a huge role in 
Bitcoin price. There has been a lot of  work done in trying to convert the social media 
sentiments and news from around the web into quantifiable terms in order to find the 
social influence on Bitcoin price. Adding such indicators in our data would greatly 
enhance the predicted price of  Bitcoin.  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Source Code: 

#!/usr/bin/env python2 

# -*- coding: utf-8 -*- 

""" 

@author: aniqueakhtar 

""" 

import tensorflow as tf  

import numpy as np 

import pandas as pd 

bitcoin = pd.read_csv("bitstampUSD_1-min_data_2012-01-01_to_2017-10-20.csv") 

# Moving average 7, 21, 77, 231 

bitcoin['MA_7'] = bitcoin['Weighted_Price'].rolling(window=7).mean() 

bitcoin['MA_21'] = bitcoin['Weighted_Price'].rolling(window=21).mean() 

bitcoin['MA_77'] = bitcoin['Weighted_Price'].rolling(window=77).mean() 

bitcoin['MA_231'] = bitcoin['Weighted_Price'].rolling(window=231).mean() 

bitcoin.MA_7.fillna(bitcoin.Weighted_Price, inplace=True) 

bitcoin.MA_21.fillna(bitcoin.Weighted_Price, inplace=True) 

bitcoin.MA_77.fillna(bitcoin.Weighted_Price, inplace=True) 

bitcoin.MA_231.fillna(bitcoin.Weighted_Price, inplace=True) 

delta = bitcoin['Weighted_Price'].diff().fillna(0) 

dUp, dDown = delta.copy(), delta.copy() 

dUp[dUp < 0] = 0 

dDown[dDown > 0] = 0 

dDown = dDown.abs() 

# Window size of  14= 1 mi, 3 min, 5 min, ()added a random) min, 15 min, 30 min, 1 hour, 4 hour. 

for n in [14, 42, 70, 150, 210, 420, 840, 3360]: 

    RolUp = dUp.rolling(window=n).mean() 

    RolDown = dDown.rolling(window=n).mean() 
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    RS  = RolUp / RolDown 

    RS = RS.fillna(1) 

    RSI = 100.0 - (100.0 / (1.0 + RS)) 

    RSI = RSI.fillna(50) 

    bitcoin['RSI_'+str(n)] = RSI 

bitcoin = bitcoin.iloc[-525600:,:] 

y2 = [] 

#len(bitcoin) 

for i in xrange(60,len(bitcoin),60): 

    a = bitcoin['Close'].iloc[i-1] 

    b = bitcoin['Close'].iloc[i-1+20] 

    percent = ((b-a)/b)*100 

    if  percent<=0.4 and percent>=-0.4: 

        y2.append(2) 

    elif  percent>0.4 and percent<=0.8: 

        y2.append(3) 

    elif  percent>0.8: 

        y2.append(4) 

    elif  percent<-0.4 and percent>=-0.8: 

        y2.append(1) 

    elif  percent<-0.8: 

        y2.append(0) 

y1 = np.zeros((len(y2), 5)) 

y1[np.arange(len(y2)), np.array(y2)] = 1 

x1 = bitcoin.as_matrix() 

x2 = x1.reshape(8760,60,20) 

x2 = x2[:8759,:,:] 

x_train = x2[:7059,:,:] 

x_test = x2[-1700:,:,:] 

y_train = y1[:7059,:] 

y_test = y1[-1700:,:] 

# CODE FOR CONVOLUTIONAL NEURAL NETWORK  
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sess = tf.InteractiveSession() 

x = tf.placeholder(tf.float32, shape=[None, 60, 20]) 

y_ = tf.placeholder(tf.float32, shape=[None, 5]) 

def  weight_variable(shape): 

  initial = tf.truncated_normal(shape, stddev=0.1) 

  return tf.Variable(initial) 

def  bias_variable(shape): 

  initial = tf.constant(0.1, shape=shape) 

  return tf.Variable(initial) 

def  conv2d(x, W): 

  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 

def  max_pool_2x2(x): 

  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], 

                        strides=[1, 2, 2, 1], padding='SAME') 

# CONV 1 

W_conv1 = weight_variable([5, 5, 1, 32]) 

b_conv1 = bias_variable([32]) 

x_image = tf.reshape(x, [-1, 60, 20, 1]) 

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) 

h_pool1 = max_pool_2x2(h_conv1) 

# CONV 2 

W_conv2 = weight_variable([5, 5, 32, 64]) 

b_conv2 = bias_variable([64]) 

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) 

h_pool2 = max_pool_2x2(h_conv2) 

# MLP 

W_fc1 = weight_variable([15 * 5 * 64, 1024]) 
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b_fc1 = bias_variable([1024]) 

h_pool2_flat = tf.reshape(h_pool2, [-1, 15*5*64]) 

h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 

# DROPOUT 

keep_prob = tf.placeholder(tf.float32) 

h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 

# SOFTMAX 

W_fc2 = weight_variable([1024, 5]) 

b_fc2 = bias_variable([5]) 

y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 

# TRAINING 

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, 
logits=y_conv)) 

train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) 

correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) 

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 

batch_size = 100 

N = x_train.shape[0] 

with tf.Session() as sess: 

  sess.run(tf.global_variables_initializer()) 

  for i in range(20000): 

    batch_ind = np.random.choice(N,batch_size,replace=False) 

    if  i % 50 == 0: 

      train_accuracy = accuracy.eval(feed_dict={x: x_train[batch_ind], y_: y_train[batch_ind], 
keep_prob: 1.0}) 

      print('step %d, training accuracy %g' % (i, train_accuracy)) 

    train_step.run(feed_dict={x: x_train[batch_ind], y_: y_train[batch_ind], keep_prob: 0.5}) 

# EVALUATING 

  print('test accuracy %g' % accuracy.eval(feed_dict={ 

      x: x_test, y_: y_test, keep_prob: 1.0}))
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