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Abstract—Mobile edge and vehicle-based depth sending and
real-time point cloud communication is an essential subtask
enabling autonomous driving. In this paper, we propose a
framework for point cloud multicast in VANETs using vehicle
to infrastructure (V2I) communication. We employ a scalable
Binary Tree embedded Quad Tree (BTQT) point cloud source
encoder with bitrate elasticity to match with an adaptive random
network coding (ARNC) to multicast different layers to the
vehicles. The scalability of our BTQT encoded point cloud
provides a trade-off in the received voxel size/quality vs channel
condition whereas the ARNC helps maximize the throughput
under a hard delay constraint. The solution is tested with the
outdoor 3D point cloud dataset from MERL for autonomous
driving. The users with good channel conditions receive a near
lossless point cloud whereas users with bad channel conditions
are still able to receive at least the base layer point cloud.

Index Terms—Point cloud, Autonomous driving, Adaptive
Random Network Coding (ARNC), V2I

I. INTRODUCTION

A point cloud is a 3D data representation that is becoming
increasingly popular due to the advent of various depth scan-
ning sensors like LiDAR and mmWave radars. Point cloud
represents the geometry and shape of any 3D regular structure.
In the future, we can expect most autonomous driving cars to
be able to “see” the world [1] by receiving real-time point
cloud data and be able to make “intelligent” decision by per-
ceiving the unstructured environment. The advances in cellular
network and the proposal of 5G new radio technology [2]
allows us to multicast large amount of point cloud data through
vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V)
communication in vehicular ad hoc networks (VANETs).

The performance of the point cloud multicast and the
Quality of Experience (QoE) of the vehicles is affected by
both the source-coding accuracy as well as network coding
under hard latency deadline. To maximize the quality of the
received point cloud, it is crucial to devise a clever method
to encode point cloud in a scalable manner as well as have
an optimal network coding scheme that would maximize
each vehicle’s QoE. We employ a variable-rate encoder at
the transmitter called the Binary Tree embedded Quad Tree
(BTQT) encoder to create a scalable layered-encoded point
cloud. This scalability generates enhancement layers where
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the more layers a particular vehicle is able to receive the
better the quality of received point cloud. Network coding is
originally proposed in information theory and can be seen as
a promising technique to improve the network’s throughput,
efficiency, and scalability [3]. Network coding can make the
V2I communication efficient by letting the base station (BS)
combine the packets prior to multicasting them to receivers,
therefore, simplifying the BS scheduling process [4]. It has
been proven that one can approach the multicast capacity by
using the random network coding (RNC) technique [5], [6],
where each user can decode the original data when it receives
a full set of independent linear coded packets. However, our
source encoded point cloud has enhancement layers, and if the
enhancement layers are too many, some users might not be
able to receive a full set of network coded packets due to hard
latency constraint and the channel loss causing a considerable
decrease in QoE. On the other hand, if the BS transmits too
few enhancement layers apart from the base layer, most users
would be able to decode the data before the hard deadline
but the QoE of users would be compromised. Therefore, we
employ Adaptive Random Network Coding (ARNC) [7] to
ensure a receiver can decode part of the transmitted packets
even if it cannot receive a full set of network coded packets.
This provides protection to the base layer and each user is able
to decode a different number of enhancement layers based on
their channel conditions.

For source encoding, Octree is commonly used to compress
the static point cloud or to intra-code the frame in a dynamic
point cloud. [8] and [9] compress the point cloud using
Octree and employ local surface estimation with predictive
coding to estimate the child cell configurations. Dynamic point
cloud compression techniques use the difference between two
frames. [10] encodes the structural difference between the
octree structure of frames. [11] creates a fixed size block in
a voxelized point cloud and computes the motion associated
with these blocks in the next frame. [12]–[14] transforms
the point cloud into a mesh and use mesh compression
techniques to reduce the number of edges and vertices using a
surface approximation. In the network layer, network coding
is widely studied in V2V and V2I communication. In [15],
network coding for content dissemination in V2I and V2V
communication is studied, but it does not consider scalable
transmission. In [7], the scalable video transmission is studied
by ARNC, however, the influence of vehicle’s mobility is not
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Fig. 1: System Model.

considered.
To the best of our knowledge, this is the first work to provide

a scalable point cloud source encoding using ARNC to multi-
cast real-time 3D point cloud, with desired tradeoffs with point
cloud 3D representation accuracy and radio resources/channel
conditions. The main results and contributions of this paper
include:
• We provide a framework for point cloud multicast with

hard latency requirements for scenarios like autonomous
driving. We adopt a Binary Tree embedded Quad Tree
(BTQT) based point cloud source encoder [16] to gener-
ate a scalable layered representation of point cloud with
the base layer and enhancement layers. We can represent
the geometry of the same point cloud at different quality
level achieving different compression levels. If we receive
more enhancement layers, we would obtain smaller voxel
size and hence finer point cloud representation.

• Layered data is inherently more sensitive to transmission
loss, as decoding has dependency across layers, and
transmission loss in top layer (base layer) affects the
decoding of deeper layers (enhancement layers). The use
of ARNC mitigates such sensitivity by combining the
deeper layers with upper layers enabling the decoding of
upper layers if the deeper layer is received. This is done
by adaptively and carefully designing the combination
coefficients of the packets in during ARNC.

• We use the average throughout as the metric to model
the QoE of the vehicles. We implement a Rayleigh
fading channel to analytically model the probability of
successful transmission for every vehicle. We optimize
our solution to maximize the average throughput by
solving the Markov Decision Process (MDP).

• We compare the performance of the ARNC with other
benchmark algorithms in our simulations. Furthermore.
we analyze the performance of our system in Rayleigh
fading channel as well as spatial channel model (SCM)
which is a more realistic channel model in the 3rd
Generation Partnership Project (3GPP) [17].

II. FRAMEWORK

We first encode the point cloud using the BTQT encoder.
We convert the BTQT encoded data into layers with each layer

Fig. 2: Binary-tree depiction in 2D plane.

refining the point cloud by increasing its quality. Then we use
ARNC to optimize the QoE of vehicles with different channel
conditions and maximize the throughput. The system model
is shown in Fig. 1.

A. Binary Tree embedded Quad Tree (BTQT)

Point cloud has a huge amount of data and therefore
creates a bottleneck in communication. We employ a variable-
rate encoder at the transmitter called the BTQT encoder to
create layered-encoded point cloud data. The characteristics
of binary tree and quad tree, and how they are used together
to encode a point cloud are explained in [16]. A voxel is
the volume element, defined in 3D space. With our encoding,
we try to achieve as small voxel size as possible to get the
better quality reconstruction of point cloud. The BTQT creates
lowest to highest representation of the point cloud in layers
with different quality. The BTQT generates a base layer and
a lot of enhancement layers where the decoding of a layer
has dependency on the previous layers. The BTQT encoder
encodes both the geometry as well as the color of a point
cloud. Since in this paper, we are concerned with the geometry
transmission of the point cloud, we will ignore the colors in
the point cloud and only encode the geometry and transmit it
through the channel. We encode the point cloud using BTQT
using a two-step approach. The first step of the encoding
includes a lossy encoding using a Binary Tree (BT). In the
second step, we refine the BT encoding by Quadtree (QT) if
the points lie in an approximate 2D plane, or by Octree (OT)
if the points cannot be approximated by a 2D plane.

In the first step, we encode the point cloud using the
binary tree. Binary tree helps us create block formation in
the point cloud frame. Binary tree divides our frame into
subframes during each iteration. One example of Binary-tree
in 2D plane is shown in Fig. 2. The division occurs at the
median of the dimension that has the most variance. Binary
tree iteratively divides the frame into 2L subframes where L
is the depth of the binary tree. Each of these subframes are
called leafnodes and contain all the datapoints (x, y, z) from
the original point cloud that were located in this subframe. Fig.
3 shows one frame of the MERL dataset divided into leafnodes



Fig. 3: Block formation using binary tree for MERL dataset.

(a) Octree (b) Quadtree
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Fig. 5: Occupancy bit assignment in the octree.

using Binary-tree. Binary tree partitions the point cloud into
leafnodes where each node contains almost the same amount
of data points.

In the second step, we further encode each of the leafnode
with either Quadtree or Octree based on the projection of the
data points. If the data points within a BT leafnode exhibits flat
characteristics they are projected onto a 2D plane and encoded
with Quadtree. Otherwise, the BT leafnode is encoded in 3D
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Fig. 6: Bitstream of the encoded BTQT point cloud.

using Octree. Fig. 4 shows how an Octree and a Quadtree
encoded leafnode looks like. Octree recursively divides a 3D
block into eight sub-blocks by splitting the block into two
halves in all three dimensions. These sub-blocks are called
child-cells or child-nodes. The sub-cells that are non-empty
are further divided into eight sub-cells until some stopping
criteria are met or maximum depth is reached. Encoding is
done by storing the occupancy bit at each level of division.
Each division splits the cell into eight sub-cells. Any sub-cell
that is empty is assigned 0, whereas non-empty sub-cells are
assigned 1, as observed in Fig. 5. Each layer of the Octree is
assigned occupancy bits and then scanned in a breadth-first-
search or top-to-bottom and left-to-right manner. The bitstream
we get is the Octree encoded leafnode. A Quadtree is the 2D
version of Octree and follows a similar procedure. In Fig. 4
we can compare both Quadtree and Octree. In Fig. 4b we
can also observe that the point cloud points (blue dots) are
approximated by the centroid of the box (red cross).

The coding process and the final bitstream is shown in
Fig. 6. Fig. 6(a) shows the unordered and uncoded point
cloud data. After the BTQT encoding, we convert it into
different leafnodes through BT encoding and each leafnode
has multiple layers due to OT and QT encoding. Each layer
here is a different quality representation of point cloud where
deeper layers are enhancement layers and are dependent on
the decoding of the upper/previous layers.

B. System Model

As shown in Fig. 1, we consider a two lanes, straight road
model [18], [19]. Vehicles in the first lane move from left
to right, whereas the vehicles in the second lane move in
the opposite direction. The locations of the BSs are equally
spaced with an interval of 2R meters. The transmitter wishes
to multicast L encoded point cloud layers to all users within
a hard deadline of T ≥ L time slots, where it is assumed that
each layer can be encapsulated into one packet. For our for-
mulation, we focus on the transmission from a single BS and
label it as BS 0. The neighboring BSs can cause interference
and are respectively denoted by BS (−i) and BS (i) for the
left and right sided neighbors where i = · · · ,−2,−1, 1, 2, · · · .



K1 and K2 define the number of vehicles in lane 1 and lane
2 respectively which are under the coverage of BS 0. The
initial location of every vehicle k is randomly chosen within
the coverage of BS 0. As shown in Fig. 1, the boundary
for the coverage area of BS 0 is represented by the vertical
dotted lines in left and right sides of BS 0. For a vehicle
k1 in lane 1 (k1 = 1, 2, · · · ,K1), its initial distance from
the left-side boundary of BS 0 is denoted by Y1(k, 0), where
the value of Y1(k, 0) is randomly selected between 0 and
2R. Similarly, the initial distance of a vehicle k2 in lane 2
(k2 = 1, 2, · · · ,K2) from the right-side boundary of BS 0,
Y2(k, 0), is randomly chosen from [0, 2R]. Thus, for a vehicle
k1 and k2, their locations at the beginning of a time slot t
can be expressed by Y1(k1, t) = Y1(k1, t− 1) + v(k1)∆t and
Y2(k2, t) = Y2(k2, t − 1) + v(k2)∆t respectively, where ∆t
is the duration of one time-slot. The velocity of an arbitrary
vehicle k (k = 1, 2, · · · ,K where K = K1 +K2) is denoted
by v(k), and is randomly chosen from uniform distribution
[Vmin, Vmax], where Vmin and Vmax are the minimal and maximal
velocity of the vehicles respectively. In this work, we assume
the serving BS is fixed to BS 0 during one transmission period.
Let us denote the height of each BS by h; then the distance
d1 and d2 between BS i and vehicle k in lane 1 and lane 2
respectively can be written as:

d1(k, i, t) =


√

[(2|i| − 1)R+ Y1 (k, t)]
2

+ h2, i < 0√
[R− Y1 (k, t)]

2
+ h2, i = 0√

[(2i+ 1)R− Y1 (k, t)]
2

+ h2, i > 0

and

d2(k, i, t) =


√

[(2|i|+ 1)R− Y2 (k, t)]
2

+ h2, i < 0√
[R− Y2 (k, t)]

2
+ h2, i = 0√

[(2i− 1)R+ Y2 (k, t)]
2

+ h2, i > 0

The signal from each BS i to the vehicle k at time
t will suffer path-loss, small-scale fading, and noise. The
received signal-to-interference-plus-noise ratio (SINR) can be
expressed as:

SINR (k, t) =
P d (k, 0, t)

−α|h0|2∑
i:i 6=0 P d (k, i, t)

−α|hi|2 +N0

, (1)

where P is the transmission power, α > 2 is the path-loss
exponent, and N0 is the noise power. d(k, i, t) is valid for
d1(k, i, t) and d2(k, i, t), depending on which lane the vehicle
k is located in. Here, the Rayleigh block fading channel model
is assumed, and thus |hi|2 ∼ exp(1). The transmitted message
from the serving BS at time t will be recovered successfully
if the receive-SINR exceeds the decoding threshold, θ. The
probability of this event can be expressed as

Pc(k, t) = Pr (SINR (k, t) ≥ θ)

= e(−θP
−1d(k,0,t)αN0)

∏
i:i 6=0

1

1+d (k, 0, t)
α
d (k, i, t)

−α
θ
,

(2)

which is highly impacted by the mobility pattern. The detailed
derivation of this equation can be found in [20].

C. Adaptive Random Network Coding (ARNC)

During source coding, we encode the point cloud using
scalable BTQT to generate L layers. The first layer is the
base layer and each next layer is an enhancement layer which
can only be decoded if the initial layers are all received. Every
vehicle would recover the data with a different quality based
on how many successive l layers (l = 1, 2, · · · , L) it receives
within the hard-time delay constraint of T ≥ L time slots.
A larger l implies a higher quality video at the receiver side.
We represent the data in layer l by αl and assume it can
be transmitted in a single attempt. Due to the hard deadline
constraint, channel loss, and mobility choosing which layers
to transmit is challenging for the BS. If the BS transmits too
few enhancement layers apart from the base layer, although
most vehicles would be very likely to recover all the layers,
the QoE of the vehicles would be compromised. On the other
hand, if the enhancement layers are too many, vehicles with
good channel conditions would see a high QoE, however, the
vehicle with low channel quality might not even receive the
base layer (α1).

To optimize the QoE of the vehicles and maximize the
multicast throughput, we use adaptive random network coding
(ARNC). In ARNC, the transmitted message is a combination
of multiple layered data weighted by a coefficient for each
layer. Generation of the message in ARNC is a two-step
process: determine the generation at ∈ {1, 2, · · · , L}; and
generate the message which is a combination of the first at
layers data. The transmitted message in time slot t can be
represented by

c(t) =

at∑
j=1

βt,jαj ,

where βt,j is the encoding coefficient of αj at time slot t, and
it is randomly chosen from a large finite field Fq [7].

In the non-network coding, the BS transmits one layer
whereas in ARNC the BS transmits a combination of different
layers at a time. The receiver only cares about the number of
messages it has already received and the rank of the receive
coefficients [7]. In the traditional RNC, the generation in each
transmission is always L whereas ARNC is more flexible with
generation at ∈ {1, 2, · · · , L} and provides more protection
for the base layer. For example, when L = 3, if a vehicle
receives two messages, it would not be able to decode anything
in traditional RNC but can still receive α1 and α2 in ARNC
if the generation at = 2. An optimal BS scheduling policy to
determine the generation dynamically in each transmission is
crucial to maximizing the ARNC performance. The generation
determination should consider the channel condition of the
vehicles which is influenced by its mobility. For a vehicle with
a good channel, it is desirable to transmit a message containing
more layers while vehicles with bad channel condition would
prefer a message only containing few layers as to maximize
the chance of receiving the base quality of the point cloud



data. Furthermore, we assume that each user may inform the
transmitter on whether a packet has been successfully received
or not via uplink feedback.

We define average throughput as the average number of
successive layers a vehicle receives within T time slots. The
average throughput of the network can be maximized by
optimizing the BS scheduling policy at each transmission.
This optimization problem can be perfectly cast into Markov
Decision Process (MDP) framework [7]. In MDP, the BS
makes a decision at at time t based on the current network
state St which records the messages that have already been
received by the vehicles. In specific,

St =

s1,1 · · · s1,L

...
. . .

...
sK,1 · · · sK,L

 , (3)

where sk,l (k = 1, 2, · · · ,K and l = 1, 2, · · · , L) is the
number of messages received by user k containing the first
successive l layers. An arbitrary user k with state sk =
[sk,1, · · · , sk,L], can decode the first l data if{∑l−1

i=1 min(sk,i, 1) + sk,l = l,∑l
i=1 min(sk,i, 1) + sk,l+1 < (l + 1).

Then the average throughput of the network at time slot t,
denoted by τt can be expressed as:

τt =
1

K

K∑
k=1

lk layer/vehicle,

where lk is the number of useful packets (from layer 1 to layer
lk) user k has received.

Suppose at = m is determined as the action, then based on
the channel condition of vehicle k, the element sk,m changes
to sk,m + 1 with probability Pr(SINR (k, t) ≥ θ) as shown
in (2) or sk,m otherwise. Then the current network state St is
updated to St+1. With the updated St+1, we can also calculate
the throughput performance τt+1. Then the benefit of the
action at can be represented as r(St, at) = τt+1 − τt.

The action set in the T transmissions can be denoted as
Ω = {a1, a2, · · · , aT }, and the throughput of the network can
be maximized by solving the optimization problem

max
Ω

T−1∑
t=0

r(St, at). (4)

The optimization problem can be solved by greedy method
and is shown in [7], therefore, omitted in our current work.

III. SIMULATION RESULTS

In this section, we simulate the throughout performance
of multicasting BTQT encoded point cloud data with hard
deadline constraint. The values of the parameters used in the
simulations are listed in Table I. For source encoding, we kept
the Binary tree depth to 10 whereas the Octree/Quadtree depth
determined the number of layers L = 7. As an attribute of
BTQT encoding, it is to be noted that as a vehicle receives

TABLE I: Parameter setting in the simulation.

Parameter Value Parameter Value
BS coverage R 100 m delay constraint T 10 slots
threshold, θ 1 dB maximal speed Vmax 120 km/h
BS power 40dbm minimal speed Vmin 60 km/h
vehicles in lane 2 K2 2 noise power N0 -110 dbm
vehicles in lane 1 K1 2 pathloss exponent α 3.85
number of layers L 7 Binary tree depth 10

more layers, the voxel size of the decoded point cloud de-
creases exponentially giving us a finer and of a higher quality
point cloud. Our simulation study the throughput performance
of the network with a varying number of vehicles on the road,
and different hard latency constraints. In Fig. 7 we visualize
the received point cloud for three users each able to receive
and decode a different number of layers.

In addition, as stated in [7], despite the proposed ARNC
with full feedback (referred to hereinafter as AFF) the perfor-
mance of some benchmark schemes like ARNC with limited
feedback (referred to hereinafter as ALF), ARNC without
feedback (referred to hereinafter as ANF), and RNC are also
given. In ALF scheme, the BS determines the generation as l
in the lth transmission without considering the feedback of the
vehicles if l ≤ L; while in ANF scheme, the generation in the
lth transmission is l if l ≤ L or L otherwise. In the analytical
part, we assumed, for simplicity, a Rayleigh fading channel
without doppler effect. However, in the simulation process, we
use both Rayleigh fading channel as well as 3GPP’s spatial
channel model (SCM) and compare the results. SCM channel
is widely used for wireless system simulation in industrial
labs. We use ’suburban macro’ scenario for SCM channel
generation as prescribed by 3GPP. The number of resolvable
paths (channel taps) is assumed to be 6, while the path delays
are drawn from the delay distribution specified in [17]. We
assume 20 sub-paths for each path. Azimuth angles for both
BS and mobile devices are drawn from U(−180, 180).

A. Varrying the number of vehicles K

Fig. 8 shows how the number of vehicles, K, influences
the throughput performance. The simulation is performed by
fixing the number of vehicles in lane 2, K2 = 1, and changing
the number of vehicles in lane 1, K1, from 0 to 9. We can
observe from the figure that the average throughput decreases
with K. When the traffic is sparse, it is easier for the BS
to schedule so as to maximize the throughput with a limited
compromise in QoE. However, in a dense network, the channel
of the vehicles are diverse in each time slot and thus the
BS has to consider more vehicles while scheduling as to
maximize the throughput of all the vehicles. We can observe
that the AFF performs the best, followed by ALF, ANF, and
traditional RNC. The overhead involved in the feedback is
limited compared to the throughput gain of AFF and ALF.
When the traffic is sparse, the feedback is even smaller
whereas the throughput improvement is significant. In dense
traffic, the gap between AFF and ALF is negligible. Thus, in
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Fig. 7: Received quality for three users.
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that case, the ALF is better than AFF since it decreases the
feedback. The performance of ANF and RNC is very stable
even with the increase in K. This is because the BS has a fixed
scheduling policy in each transmission without considering the
conditions of vehicles.

In Fig. 8 we also compare the performance of AFF in the
Rayleigh channel and the SCM channel. The gap between
the two schemes is large when K is small, however, the
gap decreases with an increase in K. The performance of
AFF highly depends on the BS scheduling decision in each
transmission, and the scheduling decision further depends on
the channel condition and the feedback of the vehicles. From
this simulation, we can deduce that the channel condition
contributes more for the BS scheduling decision when the
traffic is sparse, whereas when the traffic is dense both AFF
and ALF perform similarly and so we should choose the
scheme that minimizes the feedback overhead.
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Fig. 9: Delay constraint T vs average throughput performance.

B. Influence of hard-deadline T

For this experiment, We change the hard latency constraint,
T , from 7 to 15 and measure the effect it has on the average
throughput performance. The results are shown in Fig. 9. As
could be predicted, the increase in the latency constraint im-
proves the throughput of the whole network. This is because,
with a higher T , the vehicles have a higher probability of
receiving more messages, therefore, they will be able to decode
more layers. Similar to Fig. 8, we can observe that ARNC with
feedback outperforms other schemes, and the gap between
different schemes keep stable with T . When T is close to L,
the ALF performs like ANF because it does not have enough
feedback. However, with an increase in T ALF performs close
to AFF.

IV. CONCLUSION AND FUTURE WORK

In this paper, we present a framework for scalable real-
time 3D point cloud multicast via vehicle-to-infrastructure
(V2I) communication with hard latency constraint. We offer



cross-layer optimization by adopting Binary Tree embedded
Quad Tree (BTQT) source encoder and adaptive random
network coding (ARNC) in the multicast system which offers
scalability with improved QoE for vehicles. Each vehicle
may receive a different quality/voxel size of the point cloud
depending on the mobility and channel conditions of that
particular vehicle. We solve a Markov decision process (MDP)
to maximize the throughput performance of our layered and
ARNC coded point cloud. Simulation results show the ARNC
with feedback outperforms other benchmark scenarios. As our
future work, we would analyze the influence of handover on
our network and how the incorporation of vehicle-to-vehicle
(V2V) communication enhances the network performance. We
would further study and optimize the source and network
coding dependencies as well as choosing the right packet size
for network coding. In addition to the point cloud geometry,
the attributes from the point cloud, such as LiDAR reflectance,
will also need to have a scalable source encoding compression
scheme.
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