
LOW LATENCY SCALABLE POINT CLOUD COMMUNICATION

Anique Akhtar, Birendra Kathariya, Zhu Li

University of Missouri-Kansas City
email: {aniqueakhtar, bkkvh8}@mail.umkc.edu, lizhu@umkc.edu

ABSTRACT

Mobile edge and V2V Low latency streaming of 3D infor-
mation is a crucial technology for smart city and autonomous
driving. In this paper, we propose a joint source-channel cod-
ing framework for transmitting 3D point cloud data to dif-
ferent quality-of-service devices by creating a scalable repre-
sentation of point cloud. We employ a scalable Binary Tree
embedded Quad Tree point cloud encoder with adaptive mod-
ulation and coding schemes to guarantee the latency as well
as the quality requirement of each user. We perform link
level simulations using outdoor 3D point cloud dataset from
LiDAR scans for auto-driving. The scalability of our en-
coded point cloud provides a trade-off in the received voxel
size/quality vs channel condition under a hard latency con-
straint. The users with good channel conditions receive a near
lossless point cloud whereas users with bad channel condi-
tions are still able to receive at least the base layer point cloud.

Index Terms— Point Cloud, Auto-driving, JSCC, Source
Encoding, Channel Coding

1. INTRODUCTION

Point Cloud is a 3D data representation that is becoming in-
creasingly popular due to the advent of various depth scan-
ning sensors like LiDAR. For robots and smart devices to
work in an unstructured environment, they need to perceive
the world. In the future, we can expect most robots and auto-
driving cars to be able to “see” the world [1] by receiving
real-time point cloud data. With the advances in 5G New
Radio technology [2] and the introduction of edge comput-
ing [3], point cloud communication for autonomous vehicles
has become feasible. The quality of point cloud streaming
is affected by both the source-coding accuracy as well as the
amount of redundancy introduced by forward error correction
(FEC) channel coding to protect the compressed point cloud
over the channel. Joint Source Channel Coding (JSCC) is
well-studied for 2-D videos but not much work is done on it
in 3D point clouds. Transmitting point cloud is challenging
since point cloud generates a large amount of data that cre-
ates a bottleneck in real-time low latency point cloud stream-
ing. Being able to broadcast point cloud is particularly useful
in applications like auto-driving where the vehicles would be

able to “see” an area even if it’s not in the line-of-sight of the
car and hence be able to make more “intelligent” decisions.
An infrastructure based point cloud provides a better field of
view and angles compared to a vehicle-based sensor.

In [4] joint source-channel coding for video is proposed
where an unequal error protection method is proposed for
video plus depth data over WiMAX communication chan-
nels based on unequal power allocation. [5] considers the
joint source-channel coding in the delivery of a 3D video
with depth maps by using unequal error protection (UEP) at
the packet level. In [6], the authors propose a joint source-
channel coding and optimization for layered video broadcast-
ing to heterogeneous devices. For point cloud encoding, Oc-
tree is widely used in the literature to compress the static point
cloud or to intra-code the frame in a dynamic point cloud.
Local surface estimation with predictive coding is combined
with Octree in [7] and [8] to compress the point cloud and
estimate the child cell configurations. The works that en-
code point clouds using the difference between the two frames
are called dynamic point cloud compression techniques. One
such technique, [9] encodes the structural difference between
the octree structure of frames. Similarly, [10] creates a fixed
size block in a voxelized point cloud and computes the motion
associated with these blocks in the next frame. Low latency
scalable point cloud communication using adaptive random
network coding (ARNC) has been proposed in [11].

To the best of our knowledge, this is the first work to
provide a scalable source coding with adaptive FEC to de-
liver real-time 3D point cloud. In this paper, we present a
framework for point cloud transmission with joint source-
channel coding. We adopt a Binary Tree embedded Quad Tree
(BTQT) based point cloud source encoder [12] to add elastic-
ity to the source rate and QoS. Convolutional codes are used
as our channel codes. We create a scalable source-channel
encoded point cloud representation that uses adaptive Modu-
lation and Coding Schemes (MCS) as well as BTQT encod-
ing to guarantee the latency as well as quality requirements of
each user. We carry out exhaustive link level simulations us-
ing the dataset from MPEG PCC [13] called the Mitsubishi
Electronics Research Lab (MERL) dataset for autonomous
driving. The results of the link level simulations can be used
in unicast, multicast, as well as broadcast networks for a sys-
tem level simulations. The simulation results show the scal-



Fig. 1: System Model.

(a) Binary-tree depiction in 2D plane. (b) Block formation using binary
tree for MERL dataset.

Fig. 2: Binary Tree.

ability of our encoded point cloud provides a trade-off in the
received voxel size/quality vs channel condition vs latency.

2. SYSTEM MODEL AND FRAMEWORK

We first encode the point cloud using the Binary Tree em-
bedded Quad Tree (BTQT) encoder. We convert the BTQT
encoded data into layers with each layer refining the point
cloud by increasing its quality. We use different Modulation
and Coding Schemes (MCS) to encode each of the layers of
the BTQT encoded point cloud and use convolutional channel
coding with code rates of 1/2, 2/3, & 3/4. The system model
is shown in Fig. 1.

BTQT characteristics and the working of the binary tree
and quad tree together is described in detail in [12]. A voxel is
the volume element, defined in 3D space. We try to obtain the
smallest voxel size representation of the reconstructed point
cloud after BTQT encoding. With BTQT we create multiple
representations of the point cloud data. The lowest represen-
tation is the base layer and each higher layer is an enhance-
ment layer. Each layer has dependencies across the layers
before it, therefore a user would need consecutive layers in
order to decode the final layer. We use a two-step approach
to encode the point cloud using BTQT. Step 1: First we en-
code the point cloud using binary tree which divides the point
cloud into smaller blocks where each block is called a leafn-
ode. In each iteration, Binary Tree (BT) divides one of the

(a) Octree (b) Quadtree

Fig. 3: Octree and Quadtree visualization.

number of points

(a)

(b) Leafnode 1 Leafnode 2 Leafnode x

x
y
z

(c) Layer1 Layer2 Layer3 Layer4

Fig. 4: Bitstream of the encoded BTQT point cloud.

dimension (x, y, or z) that has the most variance through its
median. The example of how a 2D plane Binary-tree looks
like is shown in Fig. 2a. Fig. 2b shows one frame of the
MERL dataset divided into leafnodes using Binary-tree. Step
2: Once the point cloud is divided into sub-frames using BT,
we encode the points in each of the leafnode. If the points in
a leafnode exhibit flat surface characteristics and can be pro-
jected onto a 2D plane, then they are encoded by Quadtree
(QT), otherwise, the points are encoded in the 3D space us-
ing Octree (OT). Example of an OT and QT are shown in Fig.
3. Like BT, Octree also works by recursively dividing the 3D
block into eight sub-blocks by dividing each dimension into
two halves.

The coding process and the final bitstream are shown in
Fig. 4. Fig. 4(a) shows the unordered and uncoded point
cloud data. We convert it into different leafnodes through BT
encoding and each leafnode has multiple layers due to OT/QT
encoding. Each layer here is a different quality representa-
tion of point cloud where the deeper layers are considerably
larger in size compared to the upper layers. In our system,
each receiver experiences different channel fading that is de-
pendent on the location, distance between transmitter and re-
ceiver, the relative speed of the transmitter and receiver, and
the multipath environment. Since we are transmitting multi-
layer encoded point cloud, our goal is to make sure that the



MCS # Coding Rate Modulation Scheme
MCS1 1/2 BPSK
MCS2 1/2 4QAM
MCS3 2/3 4QAM
MCS4 3/4 4QAM
MCS5 1/2 16QAM
MCS6 2/3 16QAM
MCS7 3/4 16QAM
MCS8 1/2 64QAM
MCS9 2/3 64QAM

MCS10 3/4 64QAM

Table 1: Modulation and Coding Schemes

BT Depth = 10 BT Depth = 12
15 FPS 30 FPS 15 FPS 30 FPS

Layer1 0.1 0.2 0.4 0.8
Layer2 0.62 1.24 2.3 4.6
Layer3 2.7 5.4 9.7 19.4
Layer4 9.8 19.6 29.7 59.4

Table 2: Avg. Bitrate (Mbps) of Source Encoding

good channel quality users are able to decode a lot of layers
and get the best quality whereas the poor channel quality users
are still able to decode some layers and still get a considerable
quality of pointcloud. This can be achieved by carefully se-
lecting the number of layers to transmit and adaptively modu-
lating and coding each layer to maximize the network utility.

Layered data is inherently more sensitive to transmission
loss, as decoding has dependency across layers. Transmission
loss in previous layers affects the decoding of enhancement
layers. We use a combination of different coding rates and
modulation schemes to create different MCS shown in Table
1. MCS schemes that obtain higher transmission rates also
tend to have higher BER. Ideally, we need to use the MCS
scheme that gives the highest transmission rate while satisfy-
ing the minimum BER requirement for the specific channel
SINR value. However, we need to increase the overall utility
of our network while making sure that the minimum require-
ments for each user are satisfied.

3. SIMULATION RESULTS

We use the dataset from MPEG PCC [13] called the MERL
dataset provided by Mitsubishi. The dataset provides a typical
roadside environment for applications such as auto-driving
vehicles and smart devices in the traffic environment. Our
goal is not to obtain a system level simulations but to show
the effect of different MCS schemes and the number of lay-
ers on the quality of the received point cloud for a particular

Mode# Layer1 Layer2 Layer3 Layer4
Mode1 MCS1 MCS2 MCS3 MCS4
Mode2 MCS4 MCS5 MCS6 MCS7
Mode3 MCS7 MCS8 MCS9 MCS10
Mode4 MCS1 MCS3 MCS5 MCS7
Mode5 MCS1 MCS4 MCS7 MCS10

Table 3: Different Modes

BW = 10 MHz BW = 20 MHz

Binary Tree
Depth = 10

Mode1 83 42
Mode2 41 21
Mode3 27 14

Binary Tree
Depth = 12

Mode1 269 134
Mode2 133 67
Mode3 88 44

Table 4: Latency per frame (ms)

user. This section only deals with the link level simulation for
a single transmitter-single receiver link. Therefore, we per-
form an exhaustive link level simulations with different chan-
nel conditions for a receiver using an additive white gaussian
noise channel model. The results of the link level simulations
can be used in a system level simulation to model a network
level unicast, multicast, or a broadcast system. We show the
feasibility of our work and the scalability of our source en-
coding in transmission. We use Binary tree depth (B = 12)
and Quad tree depth (L = 4) for this particular dataset since
it achieved good compression while maintaining fine quality.
The average bitrate we achieve from two different settings of
the source encoding (B = 10 and B = 12) and frame rate of
15 FPS and 30 FPS are shown in Table 2. The four layers
of the encoded point cloud give us different levels of quality
and show that we achieve a considerable amount of compres-
sion using our BTQT encoding.

The source encoded layered data is then channel coded us-
ing different MCS. For simulations, we only employ five dif-
ferent modes shown in Table 3. The average received voxel
size at the receiver is shown in Fig. 5a for MERL dataset.
We can observe that the quality of the received point cloud
increases with an increase in the Channel SINR. We can no-
tice that for a fair channel condition (5-15 dB), the received
voxel size is considerably good and could be used for decision
making in applications like autonomous driving. The modes
using a lower MCS scheme tends to be able to operate on a
lower SINR whereas the modes using higher MCS schemes
require a better channel quality. However, as shown in Table
4, the modes using higher MCS have lower latency compared
to modes using lower MCS. The latency is calculated assum-
ing that we are using a Nyquist pulse shaping where for prac-



0 5 10 15 20

Channel SINR

100

200

300

400

500

600

700

800

900

1000

1100

A
v
g
. 
R

e
c
e
iv

e
d
 V

o
x
e
l 
S

iz
e
 (

m
m

)
Mode1

Mode2

Mode3

Mode4

Mode5

(a) Average received voxel size for different Modes in dif-
ferent channel conditions.

0 5 10 15 20

Channel SINR

0

200

400

600

800

1000

1200

1400

1600

1800

R
e
c
e
iv

e
d
 V

o
x
e
l 
S

iz
e
 (

m
m

)

(b) Received voxel size of different frames from MERL
dataset in different channel conditions using Mode1.

Fig. 5: Results.

tical purposes the bandwidth is 25% larger than the baud rate.
If the bandwidth is low and the mode used to transmit is also
low, then the users would face high latency.

Fig. 5b shows the received voxel size for 10 different
frames from the MERL dataset for Mode1. We can observe
that the difference in the environment changes the geometry
of the point cloud and has an effect on the voxel size of that
frame. However, all the encoded point cloud frames follow
the same pattern of avg. received voxel size vs channel SINR.
This shows that point cloud data is a bursty communication
and very much dependent on the environment/pointcloud that
is being transmitted. Some outdoor environment has a very
dense point cloud whereas other environments have sparse
point clouds. Depending on the need of the user, the trans-
mitted point cloud could have a very large size or could be
considerably smaller in size. Fig. 6 shows a single frame
of the received point cloud encoded with Mode1 for two dif-
ferent users with different channel conditions. One user has a
channel SINR of 6 whereas the other user has a channel SINR
of 14. The user with channel SINR of 14 receives a near loss-
less reception of the point cloud whereas the user with chan-
nel SINR of 6 receives a very lossy reception of point cloud.

(a) Channel SINR = 5

(b) Channel SINR = 14

Fig. 6: Received Quality for two users using Mode1.

However, since the point cloud is in layered form, this user
is still able to decode the upper layers of encoded source data
and still able to get a considerable good representation of the
environment.

4. CONCLUSION

In this paper, we propose a framework for scalable 3D point
cloud communication. We develop a Binary Tree embedded
Quad Tree (BTQT) source encoder that gives us a scalable
bitstream representation of the geometry of the point cloud
data. We convert the source encoded point cloud into a lay-
ered structure where the deeper layers give us a finer repre-
sentation of the point cloud. Since the layered data is sensi-
tive to transmission losses, we use convolutional codes as our
FEC codes to minimize the transmission loss due to channel
conditions. We carry out exhaustive link level simulations
with MERL point cloud dataset from MPEG PCC. We show
the scalability of our framework and how different channel
conditions and parameters behave and impact the point cloud
streaming system.



5. REFERENCES

[1] Radu Bogdan Rusu and Steve Cousins, “3D is here:
Point Cloud Library (PCL),” in Robotics and automa-
tion (ICRA), 2011 IEEE International Conference on.
IEEE, 2011, pp. 1–4.

[2] Salah Eddine Elayoubi, Mikael Fallgren, Panagiotis
Spapis, Gerd Zimmermann, David Martı́n-Sacristán,
Changqing Yang, Sébastien Jeux, Patrick Agyapong,
Luis Campoy, Yinan Qi, et al., “5G service require-
ments and operational use cases: Analysis and METIS
II vision,” in Networks and Communications (EuCNC),
2016 European Conference on. IEEE, 2016, pp. 158–
162.

[3] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh
Addepalli, “Fog computing and its role in the internet of
things,” in Proceedings of the first edition of the MCC
workshop on Mobile cloud computing. ACM, 2012, pp.
13–16.

[4] Chaminda TER Hewage, Zaheer Ahmad, Stewart T
Worrall, Safak Dogan, Warnakulasuriya Anil Chandana
Fernando, and A Kondoz, “Unequal error protection
for backward compatible 3-D video transmission over
WiMAX,” in Circuits and Systems, 2009. ISCAS 2009.
IEEE International Symposium on. IEEE, 2009, pp.
125–128.

[5] A. Vosoughi, P. C. Cosman, and L. B. Milstein, “Joint
Source-Channel Coding and Unequal Error Protection
for Video Plus Depth,” IEEE Signal Processing Letters,
vol. 22, no. 1, pp. 31–34, Jan 2015.

[6] Wen Ji, Zhu Li, and Yiqiang Chen, “Joint source-
channel coding and optimization for layered video
broadcasting to heterogeneous devices,” IEEE Transac-
tions on Multimedia, vol. 14, no. 2, pp. 443–455, 2012.

[7] Rufael Mekuria, Kees Blom, and Pablo Cesar, “Design,
Implementation, and Evaluation of a Point Cloud Codec
for Tele-Immersive Video,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 27, no. 4,
pp. 828–842, 2017.

[8] Ruwen Schnabel and Reinhard Klein, “Octree-based
Point-Cloud Compression.,” Spbg, vol. 6, pp. 111–120,
2006.

[9] Julius Kammerl, Nico Blodow, Radu Bogdan Rusu,
Suat Gedikli, Michael Beetz, and Eckehard Steinbach,
“Real-time compression of point cloud streams,” in
Robotics and Automation (ICRA), 2012 IEEE Interna-
tional Conference on. IEEE, 2012, pp. 778–785.

[10] Ricardo L de Queiroz and Philip A Chou, “Motion-
compensated compression of dynamic voxelized point
clouds,” IEEE Transactions on Image Processing, vol.
26, no. 8, pp. 3886–3895, 2017.

[11] Anique Akhtar, Junchao Ma, Rubayet Shafin, Jianan
Bai, Lianjun Li, Zhu Li, and Lingjia Liu, “Low La-
tency Scalable Point Cloud Communication in VANETs
using V2I Communication,” in 2019 IEEE International
Conference on Communications (ICC). IEEE, 2019.

[12] Birendra Kathariya, Li Li, Zhu Li, Jose R. Alvarez, and
Jianle Chen, “Scalable point cloud geometry coding
with binary tree embedded quadtree,” in Multimedia and
Expo (ICME), 2018 IEEE International Conference on.
IEEE, 2018.

[13] “MPEG PCC Datasets,” http://mpegfs.int-
evry.fr/MPEG/PCC/DataSets/pointCloud/CfP/datasets/.


