
Point Cloud Geometry Prediction Across Spatial
Scale using Deep Learning

Anique Akhtar∗, Wen Gao†, Xiang Zhang†, Li Li∗, Zhu Li∗, Shan Liu†

University of Missouri-Kansas City∗, Tencent†

emails: aniqueakhtar@mail.umkc.edu, {wengao, xxiangzhang}@tencent.com, {lil1, lizhu}@umkc.edu, shanl@tencent.com

Abstract—A point cloud is a 3D data representation that is
becoming increasingly popular. Due to the large size of a point
cloud, the transmission of point cloud is not feasible without
compression. However, the current point cloud lossy compression
and processing techniques suffer from quantization loss which
results in a coarser sub-sampled representation of point cloud. In
this paper, we solve the problem of points lost during voxelization
by performing geometry prediction across spatial scale using deep
learning architecture. We perform an octree-type upsampling of
point cloud geometry where each voxel point is divided into 8
sub-voxel points and their occupancy is predicted by our network.
This way we obtain a denser representation of the point cloud
while minimizing the losses with respect to the ground truth.
We utilize sparse tensors with sparse convolutions by using
Minkowski Engine with a UNet like network equipped with
inception-residual network blocks. Our results show that our
geometry prediction scheme can significantly improve the PSNR
of a point cloud, therefore, making it an essential post-processing
scheme for the compression-transmission pipeline. This solution
can serve as a crucial prediction tool across scale for point cloud
compression, as well as display adaptation.

Index Terms—Point Cloud, Denoising, Dilated Convolutions,
Residual Learning

I. INTRODUCTION

Point clouds are being readily used in augmented and virtual

reality experiences, as well as 3D sensing for smart cities,

robotics, and automated driving applications [1]. Therefore,

point cloud capturing, transmission, and processing are essen-

tial for these use cases. However, point cloud representation

requires a large amount of data which is not always feasible

for transmission. Efficient compression technologies are in

high demand to make point cloud transmission, storage, and

processing more proficient [2]. Therefore, in 2017 MPEG

issued a call for proposals on Point Cloud Compression (PCC),

and since then MPEG has been evaluating and improving the

performances of the proposed technologies [3].

For natural captured 3D sensor signals, scene geometry

needs an efficient representation that is scalable in Level-of-

Detail (LoD) as well as efficient in compression. MPEG has

selected two technologies for PCC: Geometry-based PCC (G-

PCC) for dynamically acquired LiDAR point cloud data and

for static point cloud data, and video-based point cloud com-

pression (V-PCC) for dynamic content [3]. G-PCC employs

octree in its coding scheme, whereas, V-PCC projects point

cloud into 2D cube surfaces and then uses state-of-the-art

HEVC video encoding to encode dynamic point clouds. Octree

(a) (b)

Fig. 1: (a) Original (uncompressed) point cloud, (b) Recon-

structed point cloud suffering from quantization noise.

has been widely used in processing as well as compression of

point clouds [4], [5]. In Octree a node is subdivided into eight

child-nodes and the occupancy of each child-node is decided

by whether it has points or not. A linear model based PCC

approach has been proposed in [6].

Deep learning for point cloud solutions have also matured

with PointNet [7] among the earlier works utilizing fully con-

nected layers. This work was further extended into PointNet++

[8] by introducing hierarchical feature learning. Octree based

voxelized deep learning solutions have also been proposed

that remained state-of-the-art in the past [9]. Recently, sparse

tensors and sparse convolutions have been explored in point

cloud deep learning [10]. Sparse convolution leverages the

inherent sparsity of point cloud which makes them memory

efficient and enables deeper architecture to be built for point

cloud learning. Submanifold sparse convolutional network [11]

was the first to use sparse convolutions followed by Minkowski

Engine [12].

The current compression and transmission schemes often

suffer from quantization noise resulting in a lower LoD recon-

structed point cloud as shown in Fig. 1. Due to quantization,

978-1-7281-8068-7/20/$31.00 ©2020 IEEE

Input point cloud Upsampled point cloud

Input

patches

Output

patches

Network

N x 3 N x 8

N̂ x 3

Input

Occupancy

map

Output

Fig. 2: System Model.

(a) (b)

Fig. 3: (a) Voxel merging due to quantization. (b) Upsample

using voxel prediction.

the neighboring points in a voxelized point cloud are merged

to form a single voxel resulting in a coarser point cloud with

fewer points as shown in Fig. 3a. Leveraging this fact, we

use octree voxel subdivisions to predict the occupancy of

the empty neighboring voxels with a deep learning model as

shown in Fig. 3b. This makes our architecture a point cloud

geometry prediction scheme to upsample a lower Level-of-

Detail (LoD) point cloud into a higher LoD point cloud with-

out any overhead to the compression-transmission pipeline. We

use sparse convolution by employing Minkowski Engine with

a UNet like structure employing inception-residual network

blocks. To the best of our knowledge, this is the only work

on point cloud upsampling that specifically targets the quan-

tization loss during the compression-transmission pipeline.

Both the objective and subjective results show that we

significantly improve the quality of the point cloud. Since our

technique is a post-processing step, there is no transmission

overhead or a bit rate cost to achieve this gain. Another use

case for this technique is in display adaptation, when zooming

in a point cloud this technique can help super resolve details

for display adaptation.

II. SYSTEM MODEL

A. Problem Formulation

Quantization is a necessary step in most compression-

transmission pipelines. As a consequence of quantization,

the neighboring voxelized points get merged into one voxel.

Depending on the compression rate, the quantization step-size

(qs) can determine the number of points lost and the LoD of

the reconstructed point cloud. The quantization loss is modeled

by:

X̂ =

⌊

X

qs

⌋

× qs (1)

where qs is the quantization step-size, X is the original point

cloud and X̂ is the quantized point cloud. This quantization

results in duplicate points that are removed during the com-

pression process. One example of qs = 2 is shown in Fig. 3a.

Our goal is to reproduce these lost points by predicting the

occupancy of the neighboring empty voxels given the coarser

low LoD point cloud. An example of how each voxel would

be upsampled using voxel prediction is shown in Fig. 3b.

B. Network Architecture

Our system model is shown in Fig. 2. Generally, a point

cloud can be large with millions of points. To feed the point

cloud to the network and make our system scalable, we

subdivide the point cloud into smaller cube patches and feed

each cube patch to the network. The input patch is a voxelized

geometry and is of dimension N×3, where N is the number of

voxels in the input cube patch and 3 are the x,y,z coordinates.

The output of our network is a N × 8 occupancy map for the

2×2×2 = 8 voxels encompassing the input voxel. We use this

occupancy map to generate a denser point cloud N̂×3, where

N ≤ N̂ ≤ N ×8. It should be noted that our output predicted

occupancy map can be more than 8 voxels depending on the

qs and amount of upsampling needed. e.g. For qs = 4 we can

employ an occupancy map of 4 × 4 × 4 = 64. We aggregate

the output patches back together to form the upsampled point

cloud.

We use sparse tensors and sparse convolution using

Minkowski Engine [12]. We employ UNet type architecture

[13] with three Inception-residual network blocks (IRB) [14]

Input

PC

C
o

n
v

:
3

3
x
3
2

B
lo

c
k

 1
,

C
=

3
2

Conv: 3
3
xC |2↑

IRB, Channels=C

Conv: 33xC |2↓

IRB, Channels=C

IRB, Channels=C

IRB, Channels=C

IRB, Channels=C

IRB, Channels=C

B
lo

c
k

 1
,

C
=
6

4

B
lo

c
k

 1
,

C
=

1
2

8

B
lo

c
k

 1
,

C
=

2
5

6

B
lo

c
k

 1
,

C
=
2

5
6

B
lo

c
k

 2
,

C
=

2
5

6

B
lo

c
k

 2
,

C
=

1
2

8

B
lo

c
k

 2
,

C
=

6
4

B
lo

c
k

 2
,

C
=
3

2

B
lo

c
k

 2
,

C
=
3

2

Output

PC

Concatenate

Block 2Block 1

C = Channels

D = Output Dimension

|2↑ = Deconvolution with stride 2

|2↓ = Downsampling with stride 2

Every convolution is followed by a

Batch Norm and ReLU

Conv: 13x(C/4)

Conv: 33x(C/4)

Conv: 13x(C/2)

Conv: 33x(C/4)

Conv: 33x(C/2)

Concatenate

+

Inception-Residual Block (IRB)

C
o

n
v

:
3

3
x
D

C input Channels

Fig. 4: Network Architecture.

(a) (b) (c)

Fig. 5: (a) Original point cloud, (b) Quantized point cloud with qs = 2, (c) Upsampled point cloud.

per layer as shown in Fig. 4. We use a binary cross-entropy

classification loss to compare the occupancy map prediction

from the network and the ground truth (original) point cloud.

III. SIMULATION RESULTS

An input cube patch size of 128 × 128 × 128 voxels is

used. Dataset: the system model is simulated on 8i voxelized

full bodies dataset [15] that is being used in the MPEG

standardization. The training is performed on two sequences

(longdress, loot) and testing on the 3 sequences (redandblack,

soldier, queen). Each sequence has hundreds of point clouds

with each point cloud having up to a million points each.

We perform both objective and subjective evaluations. We

ran experiments for three qs = 4/3, 2, 4. These qs are being

used in both MPEG PCC. For qs = 4/3 and qs = 2, we predict

8 neighboring voxels. However, for qs = 4, we increased our

receptive field to include 4× 4× 4 = 64 neighboring voxels.

Which means the output of the network for qs = 4 is N ×64.

We use D1 geometry PSNR quality metric that is adopted by

MPEG [16].

The results of the simulations are shown in Table I. Input

PC is the reconstructed point cloud after compression pipeline

with a specific quantization step and the Output PC is the

output of our network. As can be seen from the table, we see

a significant improvement in the PSNR of the point cloud.

Since our method is a post-processing and adds no overhead

on the compression-transmission pipeline. We get on average

a 8.8678 dB improvement in the quality of a reconstructed

point cloud of qs = 2 without any bit-rate cost.

(a) (b) (c)

Fig. 6: (a) Original point cloud, (b) Quantized point cloud with qs = 4, (c) Upsampled point cloud.

TABLE I: Average PSNR (dB) results.

qs Input PC Output PC Difference

4/3 64.6646 73.8630 9.1984

2 63.2080 72.0758 8.8678

4 58.0077 65.1890 7.1813

The visual results are shown in Fig. 5 and Fig. 6 for

qs = 2 and qs = 4 respectively. As can be seen our approach

significantly improves the quality of the point cloud both

objective as well as in subjective evaluations.

IV. CONCLUSION

Point cloud compression is a necessary step for point cloud

transmission, storage, and processing. However, during com-

pression and transmission, point cloud suffers from quantiza-

tion noise which results in lower Level-of-Detail (LoD) point

clouds. In this paper, we propose a deep learning-based point

cloud geometry prediction scheme that takes a lower LoD

point cloud and upsamples it into a higher LoD point cloud.

We use octree to encompass each voxel and its neighboring

voxels from the lower LoD point cloud into 8 voxels (or more).

Then we learn an occupancy map for each of these voxels

using a deep learning architecture. Based on the occupancy

map, we generate a higher LoD point cloud by populating the

empty voxels. The simulation results show that our method

significantly improves the PSNR of the reconstructed point

cloud geometry without adding any transmission overhead to

the compression-transmission pipeline. This makes our method

highly efficient and ideal post-processing step in decoding, as

well as super-resolving point cloud for display adaptation.

REFERENCES

[1] Anique Akhtar, Junchao Ma, Rubayet Shafin, Jianan Bai, Lianjun Li,
Zhu Li, and Lingjia Liu, “Low latency scalable point cloud commu-
nication in vanets using v2i communication,” in ICC 2019-2019 IEEE

International Conference on Communications (ICC). IEEE, 2019, pp.
1–7.

[2] Anique Akhtar, Birendra Kathariya, and Zhu Li, “Low latency scalable
point cloud communication,” in 2019 IEEE International Conference

on Image Processing (ICIP). IEEE, 2019, pp. 2369–2373.

[3] Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Buda-
gavi, Pablo Cesar, Philip A Chou, Robert A Cohen, Maja Krivokuća,
Sébastien Lasserre, Zhu Li, et al., “Emerging mpeg standards for point
cloud compression,” IEEE Journal on Emerging and Selected Topics in

Circuits and Systems, vol. 9, no. 1, pp. 133–148, 2018.
[4] Ruwen Schnabel and Reinhard Klein, “Octree-based point-cloud com-

pression.,” Spbg, vol. 6, pp. 111–120, 2006.
[5] X. Zhang, W. Gao, and S. Liu, “Implicit geometry partition for point

cloud compression,” in Data Compression Conference (DCC), 2020, pp.
73–82.

[6] X. Zhang, W. Gao, and S. Liu, “Linear model based geometry coding for
lidar acquired point clouds,” in Data Compression Conference (DCC),
2020, pp. 406–406.

[7] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas, “Pointnet:
Deep learning on point sets for 3d classification and segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017, pp. 652–660.
[8] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas,

“Pointnet++: Deep hierarchical feature learning on point sets in a metric
space,” in Advances in Neural Information Processing Systems, 2017,
pp. 5099–5108.

[9] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin
Tong, “O-cnn: Octree-based convolutional neural networks for 3d shape
analysis,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp.
1–11, 2017.

[10] Benjamin Graham and Laurens van der Maaten, “Submanifold sparse
convolutional networks,” arXiv preprint arXiv:1706.01307, 2017.

[11] Benjamin Graham, Martin Engelcke, and Laurens Van Der Maaten,
“3d semantic segmentation with submanifold sparse convolutional net-
works,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2018, pp. 9224–9232.
[12] Christopher Choy, JunYoung Gwak, and Silvio Savarese, “4d spatio-

temporal convnets: Minkowski convolutional neural networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2019, pp. 3075–3084.
[13] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-net: Convo-

lutional networks for biomedical image segmentation,” in International

Conference on Medical image computing and computer-assisted inter-

vention. Springer, 2015, pp. 234–241.
[14] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A

Alemi, “Inception-v4, inception-resnet and the impact of residual
connections on learning,” in Thirty-first AAAI conference on artificial

intelligence, 2017.
[15] M Krivokuća, PA Chou, and P Savill, “8i voxelized surface light

field (8iVSLF) dataset,” in ISO/IEC JTC1/SC29/WG11 MPEG, input

document m42914, 2018.
[16] Sebastian Schwarz, Gaëlle Martin-Cocher, David Flynn, and Madhukar

Budagavi, “Common test conditions for point cloud compression,”
Document ISO/IEC JTC1/SC29/WG11 w17766, Ljubljana, Slovenia,
2018.

