
DYNAMIC POINT CLOUD INTERPOLATION

Anique Akhtar⋆ Zhu Li⋆ Geert Van der Auwera† Jianle Chen†

⋆University of Missouri-Kansas City †Qualcomm Technologies Inc.

ABSTRACT

Dense photorealistic point clouds can depict real-world dy-
namic objects in high resolution and with a high frame rate.
Frame interpolation of such dynamic point clouds would en-
able the distribution, processing, and compression of such
content. In this work, we propose a first point cloud inter-
polation framework for photorealistic dynamic point clouds.
Given two consecutive dynamic point cloud frames, our
framework aims to generate intermediate frame(s) between
them. The proposed deep learning framework has three major
components: the encoder module, the fusion network, and the
multi-scale point cloud synthesis module. The encoder mod-
ule extracts multi-scale features from two consecutive frames.
The fusion network employs a novel 4D feature learning
technique to merge the multi-scale features from consecutive
frames. Finally, the multi-scale point cloud synthesis mod-
ule hierarchically reconstructs the interpolated point cloud
intermediate frame at different resolutions. We evaluate our
framework on high-resolution point cloud datasets used in
MPEG, JPEG Pleno, and AVS standards. The quantitative
and qualitative results demonstrate the effectiveness of the
proposed method.

Index Terms— Dynamic Point Cloud, Interpolation

1. INTRODUCTION

Point clouds can be categorized as point cloud scenes and
point cloud objects. Point cloud scenes are typically dynam-
ically acquired using LiDAR (light detection and ranging)
sensors and are commonly used in autonomous vehicles [1].
Point cloud objects can be further subdivided into static ob-
jects and dynamic objects. A static object is a single ob-
ject, whereas a dynamic object is time-varying, where each
instance of a dynamic point cloud is a static point cloud. Dy-
namic time-varying point clouds are used in AR/VR, volu-
metric video, and telepresence and can be generated using 3D
models, i.e., CGI, or captured from real-world scenes using
various methods such as multiple cameras with depth sensors
surrounding the object and capturing movement over time.
Frame rates of LiDARs are generally 10 to 20 Hz, resulting
in a lower resolution, spatially and temporally sparse point
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cloud [2]. However, dynamic point clouds are denser photo-
realistic point clouds that contain a lot more points with high
data rates. For example, a single instance of dynamic point
cloud captured by 8i [3] contains between 1 million to 4 mil-
lion points per frame which translates to a bitrate of around
1 Gbytes per second without compression for a 30 fps dy-
namic point cloud. The high data rate is one of the main
problems faced by dynamic point clouds, and efficient inter-
polation techniques to synthesize intermediate frames would
help in the distribution, processing, and compression of such
content [4].

Video frame interpolation is commonly utilized in frame
rate conversion, novel view synthesis, video streaming, and
video compression pipeline to generate high frame rate videos
from low frame rate ones (e.g. from 30 Hz to 240 Hz). Typ-
ical video frame interpolation methods [5, 6, 7, 8] perform
two tasks: motion estimation, usually optical flow, and pixel
synthesis. However, these methods cannot be directly applied
to point clouds since 3D point clouds are unstructured and un-
ordered. There are no direct correspondences between points
in two point clouds like pixels in two images. The sparsity
and large size of point clouds further complicate the point
cloud interpolation problem. There has been limited work
on 3D point cloud interpolation and all work has been per-
formed on dynamically acquired LiDAR-based point cloud
scenes. While optical flow represents 2D pixel movements
on the image plane, 3D scene flow represents per point 3D
movement. Optical flow can be considered the projection of
scene flow into 2D. FlowNet3D [9] is a pioneering work of
deep learning-based 3D scene flow estimation. FlowNet3D
proposed a flow embedding layer to model the motion of
points in different point cloud scenes. Following FlowNet3D,
FlowNet3D++ [10] proposed geometric constraints in the
form of point-to-plane distance and angular alignment to fur-
ther improve the accuracy of scene flow estimation. There
have been further works [11, 12, 13] that explore point cloud
scene flow estimation or interpolation. PointINet [14] esti-
mates bi-directional 3D scene flows, performs frame warping,
followed by point fusions and intermediate point cloud gen-
eration. Even though these methods make a decent baseline
in point cloud scene flow estimation, they are only limited
to LiDAR-based point cloud scenes and are not applicable to
photo-realistic dynamic point clouds.

Compared to dense dynamic point clouds, LiDAR point
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Fig. 1. System Model. F 1 and F 3 are the input frames while F̂ 2 is the interpolated frame.

clouds tend to be sparser, with a lower frame rate and a
smaller number of points. Since point cloud scenes are dy-
namically acquired, there is more scene rigidity as well as
point correspondences. However, photo-realistic dynamic
point clouds tend to be denser where the object moves and
changes shape making the point correspondences difficult
and thus the scene flow methods are inapplicable to dynamic
point clouds. Moreover, the large size of the photo-realistic
dynamic point clouds makes the task further challenging [15].
To address these issues we propose a first of its kind dynamic
point cloud interpolation framework. Given two consecutive
dynamic point cloud frames, our framework aims to gener-
ate intermediate frame(s) between them. We propose three
different modules: the encoder network, the fusion network,
and the multi-scale point cloud synthesis module. The en-
coder module extracts features from frames at four different
scales. The fusion network takes features at different scales
from consecutive frames, concatenates them into 4D features,
then utilizes 4D convolutions to merge consecutive frame
features. Finally, the multi-scale point cloud synthesis mod-
ule hierarchically interpolates the target frame at different
resolutions.

2. POINT CLOUD INTERPOLATION

In this section, we first introduce the overall architecture of
the proposed point cloud interpolation network and then ex-
plain the details of the key components of our framework.

The overall system model is shown in Fig. 1. Given two
point cloud frames F 1 ∈ RN×3 and F 3 ∈ RN×3, the goal is
to predict the intermediate point cloud frame F̂ 2.

2.1. Network

The proposed framework contains three different modules:
the encoder network, the fusion network, and the multi-scale
point cloud synthesis module. We use sparse tensors and
sparse convolution using Minkowski Engine [16]. The input
frames are pre-processed where they are voxelized and con-
verted into sparse tensors.

2.1.1. The Encoder Module

We employ the encoder module for multi-scale point cloud
feature extraction. This module learns the point cloud fea-
tures at four different scales for both frames F 1 and F 3.
Both encoder modules shown in Fig. 1 are identical and
share the same weights. As shown in the evaluation results,
a pre-trained encoder module performs much better than
learning the weights of the encoder along with the rest of
the network. We pre-train our encoder module in a typical
encoder-decoder architecture using reconstruction loss (bi-
nary voxel occupancy loss) on a static point cloud objects
dataset (ShapeNet).
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Fig. 2. A single fuse block from the fusion network.

2.1.2. The Fusion network

The fusion network utilizes a novel 4D fuse block that merges
features from two consecutive point cloud frames into a sin-
gle feature. The fusion module takes features at four different
scales from frames F 1 and F 3. Different scale features are
processed individually by a fuse block as shown in Fig. 1.
The goal here is to merge features at the same scale together.
The individual fuse block is shown in Fig. 2. In the fuse
block, the features pass through 3D convolutions and then
are concatenated in the 4th dimension resulting in the feature
size of (x, y, z, 2). Where x, y, z is the size of the x, y and
z coordinates respectively. The 4D features are then passed
through 4D convolutions so the inter-frame features could be
learned. Afterward, a 4D convolution with stride in only the
4th dimension (stride = [1, 1, 1, 2]) is applied. This convo-
lution acts as a learnable pooling in a single dimension where
the resulting feature size becomes (x, y, z, 1). This is con-
verted back into 3D features so the 3D convolutions can be
applied. Since 4D convolutions tend to have higher computa-
tional complexity and extra memory consumption, we tend to
limit the amount of 4D convolutions we employ.

2.1.3. Multi-scale Point Cloud Synthesis Module

The fused features at four different scales are fed into the
multi-scale point cloud synthesis module that hierarchically
interpolates the intermediate frame F̂ 2. Sparse transpose con-
volutions are used to upscale the features. After each up-
scaling, the features from the fuse block of the same scale
are added to the synthesis module network. Upscaling us-
ing transpose convolution generates a lot of new points. To
choose the best points and dispose of invalid points, pruning
is performed. The pruning layer implements classification by
converting N×C features to N×1 features and choosing the
best features above a threshold.

2.2. Loss Function

Rather than upscaling the features directly to the full scale,
our network synthesizes the interpolated point cloud at dif-
ferent resolutions by employing multiple loss functions. The
multi-scale synthesis module produces the interpolated point
cloud at three different resolutions. As shown in Fig. 1, we
train our network using three different loss functions:

L = L1 + L2 + L3 , (1)

We perform voxel classification using binary cross-
entropy loss to compare the voxel occupancy prediction from
the network and the ground truth (original) point cloud. The
ground truth point cloud is downscaled to three resolutions,
one for each loss function.

3. EVALUATION RESULTS

In this section, we will go over our datasets, the training en-
vironment, evaluation metrics employed, and both the quan-
titative and visual results of our dynamic point cloud interpo-
lation framework.

3.1. Datasets

The encoder network is pretrained before being utilized in
the framework. The encoder is pretrained on ShapeNet
dataset which is a static objects dataset. We randomly se-
lected ≈ 24000 3D mesh models from the core dataset of
ShapeNet. The mesh model is sampled into point clouds by
randomly generating points on the surfaces of the mesh, then
randomly rotated and quantized the point cloud to 7-bit preci-
sion. For dynamic point clouds we employed sequences loot,
longdress and redandblack from JPEG Plenos 8i Voxelized
Full Bodies dataset (8iVFB v2) [17] with about a million
points per frame. We also used sequences basketball and ex-
ercise from MPEGs 8i Voxelized Surface Light Field dataset
(8iVSLF) [3] with about 2.6 million points per frame. Fi-
nally we used the sequence Queen produced by Technicolor
(https://www.technicolor.com/fr) with about 1 million points
per frame. We train on loot and longdress sequences and test
on the rest of the four sequences.

3.2. Training

The encoder architecture is pretrained on ShapeNet dataset.
We train the rest of the framework on loot and longdress
sequences. To be able to feed our network three frames each
containing about a million points per frame, we subdivide the
point cloud using kd-tree partitioning. Points are extracted
from the same locations within the cube across multiple
frames. In our training, we use a kd-tree depth of 4 to divide
each frame into 16 cubes. During evaluation, the whole point
cloud can be fed into the network.



Method
redandblack queen basketball exercise Avg

CD↓ PSNR↑ CD↓ PSNR↑ CD↓ PSNR↑ CD↓ PSNR↑ CD↓ PSNR↑

Identity 1623.69 53.68 45.29 70.75 113.65 71.73 146.54 71.19 482.29 66.84

Ours 386.22 56.88 30.44 76.08 80.96 74.54 110.20 75.48 151.96 70.75
Ours-w/o Pretrained 502.86 55.44 35.64 74.81 90.37 73.30 117.62 74.34 186.63 69.47
Ours-Single Loss 575.91 55.40 36.64 74.00 89.74 73.03 121.54 73.37 205.96 68.95
Ours-Fuse3D 865.72 54.64 37.01 73.64 100.18 72.14 125.47 73.12 282.10 68.39

Table 1. Evaluation results of our interpolation method using Chamfer Distance (CD (10−2)) and MSE PSNR (dB).
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Fig. 3. Visual Results on Redandblack dataset.

3.3. Evaluation Metrics

We consider two commonly-used evaluation metrics that
compare the reconstructed point cloud to the ground truth
point cloud to quantitatively evaluate the performance of our
method. These metrics are Chamfer distance (CD) and point-
to-point (D1) based mean squared error peak signal-to-noise
ratio (MSE PSNR). MSE PSNR has been adopted by both
MPEG and AVS standards as an evaluation metric for dy-
namic point cloud quality [18]. We obtain the point-to-point
geometry PSNRs using MPEG’s pc error tool [19].

3.4. Objective Evaluation and Visual Results

We compare our method with different variations of our
framework as well as with Identity where we simply du-

plicate the first point cloud frame as the intermediate point
cloud. The objective results of our evaluations are shown
in Table 1. Ours is the framework described in this paper.
Ours-w/o Pretrained is the framework where the Encoder
is not pretrained on ShapeNet. Ours-Single Loss framework
employs only a single loss (L3) and no longer employs losses
L1 and L2. Ours-Fuse3D framework utilizes 3D convolu-
tions in the fuse block rather than the 4D convolutions. In
this method, the features are simply added and 3D convolu-
tions are employed. As can be seen, our method considerably
performs better than Identity. Furthermore, the results show
that each sub-component of our framework is essential and
improves the results considerably. The results show that
the fusion using 4D convolutions is much more efficient in
learning the intermediate frame features compared to 3D
convolutions.

An example of visual results for sequence redandblack is
shown in Fig. 3. We can see that our method generates limited
outliers while populating points very close to the surface of
the ground truth point cloud. This results in a high-resolution
point cloud with considerably better quality than the Identity
where the previous frame is used.

4. CONCLUSION

In this work, we propose the first dynamic point cloud in-
terpolation framework for dense high-resolution point clouds.
While the previous point cloud interpolation methods are lim-
ited to point cloud scenes, our framework is able to process
and interpolate frames on a high-resolution dynamic point
cloud. We employ a pretrained multi-scale encoder module
to extract features at multiple scales. The encoder module
is pre-trained on a static object dataset (ShapeNet). We in-
troduce a novel 4D feature fusion module that utilizes 4D
learning to merge 3D features from two consecutive frames at
multiple scales. Finally, our multi-scale point cloud synthe-
sis module hierarchically reconstructs the interpolated point
cloud frame at different resolutions. We test our framework
on a diverse set of high-resolution dynamic point cloud se-
quences. The evaluation results validate our network design
and demonstrate the effectiveness of our method.
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